skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Huang, Ruixiao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Heterogeneous chiplets have been proposed for accelerating high-performance computing tasks. Integrated inside one package, CPU and GPU chiplets can share a common interconnection network that can be implemented through the interposer. However, CPU and GPU applications have very different traffic patterns in general. Without effective management of the network resource, some chiplets can suffer significant performance degradation because the network bandwidth is taken away by communication-intensive applications. Therefore, techniques need to be developed to effectively manage the shared network resources. In a chiplet-based system, resource management needs to not only react in real-time but also be cost-efficient. In this work, we propose a reconfigurable network architecture, leveraging Kalman Filter to make accurate predictions on network resources needed by the applications and then adaptively change the resource allocation. Using our design, the network bandwidth can be fairly allocated to avoid starvation or performance degradation. Our evaluation results show that the proposed reconfigurable interconnection network can dynamically react to the changes in traffic demand of the chiplets and improve the system performance with low cost and design complexity. 
    more » « less